A45 Dipole (SwissFEL 250 MeV Injector)

A45 beam-dump dipole

$$
\begin{gathered}
\text { gap }=30 \mathrm{~mm} \\
\mathrm{~L}=310-486 \mathrm{~mm} \\
\text { edge angle }= \pm 22.5^{\circ}
\end{gathered}
$$

2 coils
12×6 turns/coil $\mathrm{I}_{\mathrm{MAX}}=80 \mathrm{~A}$ (limited)

MEASUREMENT DATE:
5-11.May. 2010

MEASUREMENT ARM:
brass cylinder interface $\varnothing 40 \mathrm{~mm}$
aluminum pipe $\varnothing 28 \mathrm{~mm}, 1 \mathrm{~m}$
carbon pipe $\varnothing 12.1 \mathrm{~mm}, 1.5 \mathrm{~m}$

MEASURING SPEED:
$4.5 \mathrm{~mm} / \mathrm{sec}$ (X-axis)
$25 \mathrm{~mm} / \mathrm{sec}(Z-a x i s)$

INTEGRATION TIME:
20 msec

DVM-1 (1 V RANGE):
Hall probe sbv397 (150 mA)

DVM-2 (10 V RANGE):
50 V / 200 A (MSG-2.1), 2 A/s

AIR CONDITIONING:
ON ($\mathrm{T}_{\text {SET }}=24^{\circ}$)

OPERATORS:
Roland Deckardt
Ivan Meier
Vjeran Vranković (report)

DATA DIRECTORY:
afs: sys/alpha_dux51/swdir/
magnet/meas/a45

Alignment and positioning

The magnet was placed on adjustable base plate. The base plate can be leveled by adjusting its feet heights.

In the measurements coordinate system the magnet axis is the Z-axis, vertical axis is the Y -axis.

The probe was leveled with a spirit level built into the measuring arm.
The aligning and positioning of the magnet was done magnetically by measuring horizontal field maps of the double reference pin that was inserted in $\varnothing 30 \mathrm{~mm}$ brass adapter that was flush with surfaces of four corners on the magnet top plate (see the sketch below).

There is a discrepancy between the magnet drawing and the positions obtained from the reference pin. Distance between RP-1 and RP-3 is 454.3 instead of 456 mm from the drawing. Distance between RP-2 and RP-4 is 277.1 instead of 280 mm . Distance between the points in the other direction is 428.9 instead of 430 mm .

The coordinates of the points are shown in the table with the RP- 1 being the first point measured, hence its' coordinates ($Z=0, X=0$).

	\mathbf{Z}	\mathbf{X}	\mathbf{Y}	$\mathbf{B y}$
$\mathbf{R P - 1}$	0	0	237.76	982.17
RP-2	89.11	-428.97	237.83	981.18
RP-3	454.29	-0.10	237.73	980.79
RP-4	366.20	-428.87	237.83	981.06

The magnet center was defined to be in the middle of these 4 points. Therefore:

	\mathbf{Z}	\mathbf{X}
RP-1	-227.40	214.45
RP-2	-138.30	-214.45

Excitation curve


```
Magnet A45
File : a45e04s.lsk
Date : 10.05.10
Pre-cycle : off --> -80 A --> 80 A --> -80 A (FL)
#Curr: 17 (nPaths=2)
Z-dir: from -600.00 mm, steps of 2.00 mm
X-dir: at 0.00 mm
linear_<1:Ilin> and cubic_<Ilin:Imax> approximation of Bc:
Blin = b0 + b1 * Irel ; Irel = I / Imax
Bcub = Blin + b2 * Irel^2 + b3 * Irel^3 ; Irel = (I - Ilin) / (Imax - Ilin)
\begin{tabular}{rrrrrrrr} 
& \begin{tabular}{l} 
Ilin_A \\
\(======\)
\end{tabular} & \begin{tabular}{l} 
Imax_A \\
\(=====\)
\end{tabular} & \begin{tabular}{r} 
b0_G \\
\(====\)
\end{tabular} & \begin{tabular}{r} 
b1_G \\
\(====\)
\end{tabular} & \begin{tabular}{c} 
b2_G \\
\(===\)
\end{tabular} & b3_G & RMS_G \\
/ & 25.0 & 80.0 & -23.3 & 4732.0 & -29.2 & -4.8 & \(=====\) \\
\} \(&{10.6} &{80.0} &{23.5} &{4731.7} &{-13.2} &{-64.7} &{0.2} \\
{-} &{13.7} &{80.0} &{0.1} &{4732.2} &{-16.1} &{-40.5} &{0.2}\)
\end{tabular}
/ = increasing current branch
\ = decreasing current branch
    = average
constLeff (straight) = 424.0 mm
bendingRadius = 3472.6 mm
fullBendingAngle = 7.0 deg
particle E0 = 0.511 MeV
\begin{tabular}{|c|c|c|c|c|}
\hline I_Amp & Bdz_Gmm & p_MeV/c & E_MeV & Bc_ \\
\hline & & & & \\
\hline 0.00* & -9947.8 & -2.443 & 1.984 & 23 \\
\hline 10.00/ & 241071.4 & 59.192 & 58.683 & 568 \\
\hline 20.00/ & 491891.2 & 120.777 & 120.267 & 1160 \\
\hline 29.99/ & 742445.1 & 182.297 & 181.787 & 1751. \\
\hline 39.99/ & 992384.6 & 243.666 & 243.156 & 2340. \\
\hline 49.98/ & 1241458.2 & 304.823 & 304.312 & 2928. \\
\hline 59.98/ & 1489505.0 & 365.727 & 365.217 & 3513. \\
\hline 69.98/ & 1736310.6 & 426.327 & 425.816 & 4095 \\
\hline 79.97* & 1982422.1 & 486.756 & 486.246 & 4675. \\
\hline \(69.98 \backslash\) & 1744732.1 & 428.395 & 427.884 & 4114 \\
\hline \(59.98 \backslash\) & 1502092.4 & 368.818 & 368.307 & 3542 \\
\hline 49.98\} & 1256919.0 & 308.619 & 308.108 & 2964 \\
\hline 39.99\} & 1009803.9 & 247.943 & 247.433 & 2381 \\
\hline 29.99\} & 761141.8 & 186.888 & 186.378 & 1795 \\
\hline \(20.00 \backslash\) & 511363.1 & 125.558 & 125.048 & 1206. \\
\hline \(10.00 \backslash\) & 260822.0 & 64.041 & 63.532 & 615 \\
\hline 0.00* & 9947.8 & 2.443 & 1.984 & 23. \\
\hline \multicolumn{5}{|l|}{\multirow[t]{4}{*}{```
p = Bdz / ( 2 sin(fullBendingAngle/2) ) * c * e-13
E = sqrt(E0^2 + p^2) - E0
Bc = Bdz / constLeff
err = Bc - Bfit
```}} \\
\hline & & & & \\
\hline & & & & \\
\hline & & & & \\
\hline
\end{tabular}
err_G
\(=====\)
-0.2
0.1
-0.1
0.0
-0.2
0.3
0.1
-0.4
-0.5 (average of 2 fits)
1.1
0.3
-0.2
-0.7
-0.4
-0.4
0.0
0.0
 E = sqrt(E0^2 + p^2) - E0
 err = Bc - Bfit
```


## Field analysis

The earth and the background fields are removed from the measured fields:
$\frac{\text { measurement(+current) }- \text { measurement(-current) }}{2}$

The field maps were measured at maximal current I = 80 A and at I = 40 A (80 A $\rightarrow$ 40 A).

X Da-Vis O by PSI Magnet Section



The position of the vertex point has a direct influence on the electron beam energy, Moving the vertex to the positive $X$ coordinates will increase the electron energy for a given bending angle $\varphi=7^{\circ}$.




X_vertex [cm]	$\mathrm{p}[\mathrm{MeV} / \mathrm{c}]$	
	$\mathrm{I}=40[\mathrm{~A}]$	$\mathrm{I}=80[\mathrm{~A}]$
2.0	250.74	492.70
1.5	248.71	488.72
1.0	246.63	484.62
0.5	244.49	480.43
0	242.32	476.16
-0.5	240.10	471.81
-1.0	237.85	467.37
-1.5	235.55	462.85
-2.0	233.23	458.27

