AMD2 Dipole (PROSCAN, PIF/Gantry 3)

AMD2 dipole (AEF from CERN) measured from the beam exit end

conductor 7×7, D 4 mm
176 turns/coil, $\mathrm{I}_{\text {MAX }}=220 \mathrm{~A}$

MEASUREMENT DATE:
20-28. Oct. 2014

MEASUREMENT ARM:
brass cylinder interface $\varnothing 40 \mathrm{~mm}$
aluminum pipe $\varnothing 28 \mathrm{~mm}, 1 \mathrm{~m}$
carbon pipes $\varnothing 10 / 8 / 6 \mathrm{~mm}, 1.5 \mathrm{~m}$

MEASURING SPEED:
$4.5 \mathrm{~mm} / \mathrm{sec}$ (X-axis)
$49 \mathrm{~mm} / \mathrm{sec}(Z-a x i s)$

INTEGRATION TIME:
20 msec

DVM-1 (1 V RANGE):
Hall probe sbv 175 (150 mA)
powered in series with the other 2

DVM-2 (1, 10 V RANGE):
200 V / 500 A (MSG-1), 5 A/s

AIR CONDITIONING:
ON ($\mathrm{T}_{\text {SET }}=24.5^{\circ}$)

OPERATORS:
Roland Deckardt
Vjeran Vranković (I20-I22)

DATA DIRECTORY:
afs: group/magnet/meas/amd2

Magnet alignment and positioning

The AMD2 magnet was placed on the standard concrete blocks (H500mm). Since the magnet gap varies by almost 1 mm , the magnet's mid-plane and not the pole surface was used for levelling.

In the measurements coordinate system the magnet axis is the Z-axis, vertical axis is the Y -axis (see the sketch). The coordinate system origin is in the middle of the gap.

The positioning was done by eye.
The probe was levelled with the help of a spirit level built into the measuring arm.

Excitation curve

Before measurements the magnet was cycled from 220 A to -220 A. The measurements were performed for the currents from 0 A to 220 A and then back to 0 A. Only half of the curve was measured because the power supply used (MSG-1) is unipolar.

The fields were measured at 23 currents on the line $X=Y=0, Z= \pm 1000 \mathrm{~mm}$.

clsk.py -23						
	$\begin{gathered} \mathrm{B} \cdot \mathrm{dz}(220 \mathrm{~A}) \\ {[\mathrm{T} \cdot \mathrm{~m}]} \end{gathered}$	Lseff [mm]	$\begin{aligned} & \mathrm{ILIN} \\ & {[A]} \end{aligned}$	Boffset(0A)	Bslope [Gauss/A]	$\underset{[\%]}{\underset{[\%}{N L}\left(I_{\text {max }}\right)}$
$\underset{22 \text { Oct }}{\text { amd2e03 }}$	0.52500	581.5	87.8	13.0	43.474	-5.39

Excitation curve

/afs/psi.ch/user/v/vrankovic/mymeas/amd2/amd2e03.lsklis2 Saved: 28/10/2014 11:32:16

```
Magnet AMD2
File : amdZe03.lsk
Date : 22.10.14
Meas-type : HP
Comment : HHL
Pre-cycle : no pre-cycle (MSG-1)
#Curr: 23 (nPaths=2)
Z-dir: from -1000.00 mm, steps of 2.00 mm
X-dir: at 0.000 mm
linear_<1:Ilin> and cubic_<Ilin:Imax> approximation of Bc:
Blin = b0 + b1 * Irel ; Irel = I / Imax
Bcub = Blin + b2 * Irel^2 + b3 * Irel^3 ; Irel = (I - Ilin) / (Imax - Ilin)
\begin{tabular}{lrrrrrrr} 
& Ilin_A \\
\(=====\) & Imax_A \\
\(======\) & b0_G & b1_G & b2_G & b3_G & RMS_G \\
/ & 73.4 & 220.0 & -29.4 & 9520.0 & 114.2 & -556.0 & \(====\) \\
I & 102.8 & 220.0 & 58.4 & 9586.2 & -166.1 & -411.0 & 13.8 \\
- & 87.8 & 220.0 & 13.0 & 9564.3 & -40.7 & -475.4 & 10.4
\end{tabular}
/ = increasing current branch
\ = decreasing current branch
- = average
constLeff (straight) \(=581.50 \mathrm{~mm}\)
constLeff \(=582.2 \mathrm{~mm}\)
constBendingRadius \(=3336.0 \mathrm{~mm}\)
fullBendingAngle \(=10.0 \mathrm{deg}\)
Leff / Lz = 1.00127
particle E0 \(=938.272 \mathrm{MeV}\)
\begin{tabular}{|c|c|c|c|c|c|c|}
\hline I_Amp & Bdz_Gmm & p_MeV/c & E_MeV & Bc_G & err_G & \\
\hline 0.00* & -3137.1 & -0.540 & 0.000 & -5.4 & 24.0 & \\
\hline 19.97/ & 479684.7 & 82.499 & 3.620 & 824.9 & -9.9 & \\
\hline 39.98/ & 987472.1 & 169.832 & 15.246 & 1698.1 & -2.5 & \\
\hline 59.98/ & 1494041.0 & 256.955 & 34.549 & 2569.3 & 3.2 & \\
\hline 79.99/ & 1998413.1 & 343.700 & 60.970 & 3436.7 & 4.5 & \\
\hline 99.99/ & 2499130.3 & 429.817 & 93.763 & 4297.7 & -0.1 & \\
\hline 119.99/ & 2994962.8 & 515.094 & 132.090 & 5150.4 & -6.2 & \\
\hline 140.00/ & 3483991.3 & 599.200 & 175.009 & 5991.4 & -8.8 & \\
\hline 160.00/ & 3963594.3 & 681.685 & 221.490 & 6816.2 & -3.3 & \\
\hline 180.00/ & 4427736.0 & 761.512 & 270.138 & 7614.3 & 8.1 & \\
\hline 200.00/ & 4862467.0 & 836.279 & 318.596 & 8361.9 & 9.7 & \\
\hline 220.00* & 5249977.5 & 902.926 & 363.891 & 9028.3 & -29.8 & (average of 2 fits) \\
\hline \(200.00 \backslash\) & 4911431.0 & 844.701 & 324.215 & 8446.1 & 21.6 & \\
\hline \(180.00 \backslash\) & 4491386.0 & 772.458 & 277.066 & 7723.8 & 11.6 & \\
\hline \(160.00 \backslash\) & 4029420.0 & 693.006 & 228.181 & 6929.4 & -13.5 & \\
\hline \(140.00 \backslash\) & 3549932.5 & 610.541 & 181.154 & 6104.8 & -24.1 & \\
\hline \(120.00 \backslash\) & 3060677.3 & 526.396 & 137.575 & 5263.4 & -19.0 & \\
\hline 99.99\} & 2563720.5 & 440.926 & 98.439 & 4408.8 & -6.5 & \\
\hline 79.99\} & 2061432.1 & 354.539 & 64.749 & 3545.0 & 1.2 & \\
\hline \(59.98 \backslash\) & 1555681.9 & 267.557 & 37.403 & 2675.3 & 3.3 & \\
\hline \(39.98 \backslash\) & 1047905.1 & 180.226 & 17.152 & 1802.1 & 1.6 & \\
\hline \(19.98 \backslash\) & 539558.3 & 92.797 & 4.578 & 927.9 & -1.1 & \\
\hline 0.00* & 31926.1 & 5.491 & 0.016 & 54.9 & -3.5 & \\
\hline \multicolumn{7}{|l|}{\(\mathrm{p}=\mathrm{Bdz} /\) fullBendingAngle * Leff / Lz * c * e-13} \\
\hline \multicolumn{7}{|l|}{\(E=\operatorname{sqrt}\left(E 0 \wedge 2+p^{\wedge} 2\right)-E 0\)} \\
\hline \multicolumn{7}{|l|}{\(\mathrm{Bc}=\mathrm{Bdz} / \mathrm{constLeff}\)} \\
\hline \multicolumn{7}{|l|}{err \(=\) Bc - Bfit} \\
\hline
\end{tabular}
```


Degaussing

protons $\mathrm{E}_{0}=938.3 \mathrm{MeV}$
$\mathrm{E}=250 \mathrm{MeV}-\mathrm{p}=\operatorname{sqrt}\left(\mathrm{E} \cdot\left(\mathrm{E}+2 \cdot \mathrm{E}_{0}\right)\right)=729.1 \mathrm{MeV} / \mathrm{c}$
$B \cdot \mathrm{dl}=\mathrm{p} / 300 \cdot$ phi $-\mathrm{phi}=\mathbf{1 . 3} \mathbf{~ m r a d}$ (for the non-degaussed magnet)

Remanent fields at $X=170 \mathrm{~mm}$ and at the different Y positions ($-40,0$ and +40 mm) of the nondegaussed magnet.

Degaussing

printf " $\wedge n \backslash n$ " \mid xmes orig_files/amd2106 ... (same for all the other fieldmaps) ... (same for all the other fieldmaps)								
	$\begin{aligned} & \mathbf{I}_{\mathrm{dg} 1} \\ & {[\mathbf{A}]} \end{aligned}$	$\begin{gathered} \mathrm{B} \cdot \mathrm{dz}(\mathrm{OA}) \\ {[\mathrm{mT} \cdot \mathrm{~m}]} \end{gathered}$	$\begin{aligned} & I_{\mathrm{dg} 2} \\ & {[\mathrm{~A}]} \end{aligned}$	$\begin{gathered} \mathrm{B} \cdot \mathrm{dz}(\mathrm{OA}) \\ {[\mathrm{mT} \cdot \mathrm{~m}]} \end{gathered}$	$I_{\text {dg } 3}$ [A]	$\begin{gathered} \mathrm{B} \cdot \mathrm{dz}(\mathrm{OA}) \\ {[\mathrm{mT} \cdot \mathrm{~m}]} \end{gathered}$	$\begin{aligned} & I_{\mathrm{dg} 4} \\ & {[\mathrm{~A}]} \end{aligned}$	$\begin{gathered} \mathrm{B} \cdot \mathrm{dz}(0 \mathrm{~A}) \\ {[\mathrm{mT} \cdot \mathrm{~m}]} \end{gathered}$
amd2	$\begin{gathered} 30 \\ (107-106) \end{gathered}$	$\begin{gathered} 0.149 \\ -0.0,2.9 \end{gathered}$	$\begin{gathered} 20 \\ (109-108) \end{gathered}$	$\begin{gathered} -0.444 \\ -7.5,-0.1 \end{gathered}$	$\begin{gathered} 25 \\ (113-112) \end{gathered}$	$\begin{gathered} -0.127 \\ -2.4,0.0 \end{gathered}$	$\begin{gathered} 27.5 \\ (115-114) \end{gathered}$	$\begin{gathered} 0.002 \\ -0.2,0.6 \end{gathered}$

Field integrals (straight)


```
printf "amd2f17\n<v51,57\n\n\n\n" | combi
```

	I [A]	B_{0} [Gauss]	Lseff [mm]	$\mathrm{B} \cdot \mathrm{dz}$ [$\mathrm{T} \cdot \mathrm{m}]$	$\mathrm{B}_{1 \text { fit }}$ [G/mm]	$\mathrm{B}_{\text {2fit }}\left[\mathrm{G} / \mathrm{mm}^{2}\right]$
$\begin{gathered} \text { amd } 2 \mathrm{ff17} \\ 23 \text { Oct } \end{gathered}$	170	7332.4	581.5	0.42639	-0.193	-0.0069
$\begin{gathered} \text { amd } 2 f 18 \\ 23 \text { Oct } \end{gathered}$	90	4401.1	582.1	0.25621	-0.118	-0.0040

Hard edge model representation and raytracing

$L_{\text {SEFF }}=581.5 \mathrm{~mm}$
$R=581.5 /\left(2 \cdot \sin \left(5^{\circ}\right)\right)=3336.0 \mathrm{~mm}$
$\operatorname{sag}=3336.0 \cdot\left(1-\cos \left(5^{\circ}\right)\right)=12.7 \mathrm{~mm}$
$X_{\text {vertex }}-X_{\text {beam }}=3336.0 \cdot\left(1 / \cos \left(5^{\circ}\right)-1\right)=12.7 \mathrm{~mm}$
position magnet so that the beam is \pm sag/2 relative to the magnet centre
$X_{\text {vertex }}=12.7+12.7 / 2=19 \mathrm{~mm}$

INTEGRATE: X _vertex $=19 \mathrm{~mm}$						
			beam entrance edge		beam exit edge	
	I [A]	Z_{0} [mm]	angle [${ }^{\circ}$]	curvature [m]	angle [${ }^{\circ}$]	curvature [m]
$\underset{23 \text { Oct }}{\text { amd2f17 }}$	170	-0.7	-5.056	-1.793	-4.997	-1.802
amd2f18 23 Oct	90	-0.7	-5.054	-1.868	-4.997	-1.972

TRACK: $X_{_ \text {vertex }}=19 \mathrm{~mm}, \mathrm{Z}_{0}=-110 \mathrm{~mm}, \mathrm{X}_{0}=-77.238 \mathrm{~mm}, \mathrm{derfr}=\left(X_{\text {end }}-\mathrm{X}_{0}\right) \cdot \cos \left(5^{\text {a }}\right)$

I [A]		E [MeV]	X $_{\text {end }}[\mathbf{m m}]$	derr $^{2}[\mathbf{m m}]$
amd2f17 23 Oct	170	252.6	-77.260	0.022
amd2f18 23 Oct	90	98.3	-77.260	0.022

Beam vertex point

