SR 3&4 Spin-Rotators (HMF, muSR, piE3)

SR spin-rotator (and separator) magnet

gap = 610 mm 2 separate poles spin rotation angle = 45°

I_{MAX} = 200 A 4 coils (12x6=69 turns/coil) MEASUREMENT DATE: 6.Jun.-8.Jul.2011

MEASUREMENT ARM:

brass cylinder interface Ø 40 mm aluminum pipe Ø 28 mm, 1 m carbon pipe Ø 12.1 mm, 1.5 m

MEASURING SPEED: 49 mm/sec (Z-axis)

INTEGRATION TIME: 20 msec

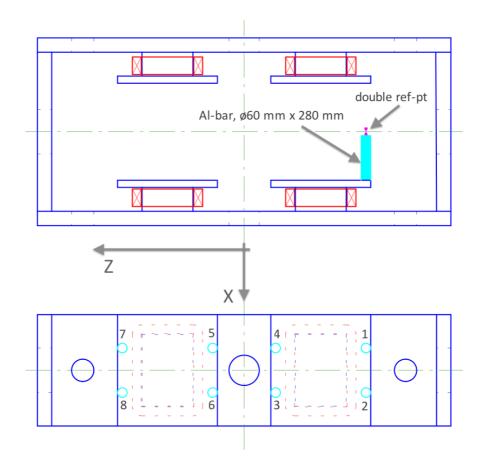
DVM-1 (1 V RANGE): Hall probe sbv397 (150 mA)

DVM-2 (10 V RANGE): 50 V / 200 A (MSG 2-1), 5 A/s

AIR CONDITIONING: ON $(T_{SET} = 24^{\circ})$

OPERATORS: Roland Deckardt Ivan Meier Nicola Berger Vjeran Vranković (report)

DATA DIRECTORY: afs: sys/alpha_dux51/swdir/ magnet/meas/srhmf

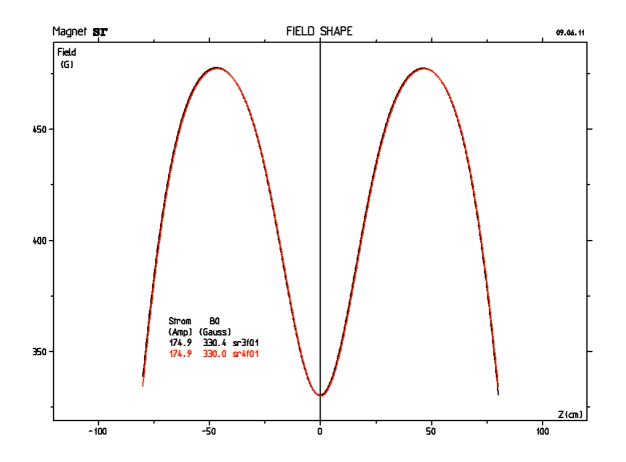

Alignment and positioning

The magnets were placed on aluminum bars lying on stones. There were no alignment possibility with the bars so only a coarse rotation around the vertical Y axis and leveling the bottom poles in water while the magnet was hanging on the crane was carried out.

The magnets were measured from one end. Due to the magnet 2.6 m length only a half of the magnet was measured. But, before the measurements the measuring arm has been extended in order to reach over the magnet half and check the field symmetry along Z-axis (beam).

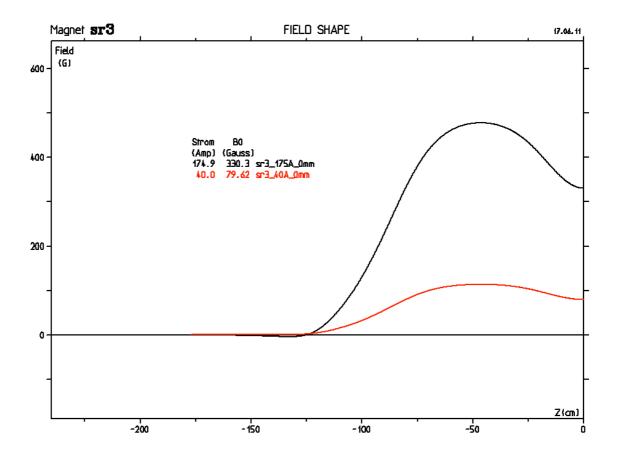
The positioning was done magnetically by finding positions of the double reference pin placed on 4 corners of the **bottom** poles as shown on the sketch. The middle of all 8 points is chosen to be the center of the magnet coordinate system with a correction of 1 mm in the Y direction. The magnet gap is 610 mm so the distance from the poles to the mid-plane is 305 mm but the reference pin was at the hight of 306 mm (280 mm of the aluminum bar plus 26 mm of the reference pin).

The probe was leveled with a spirit level built into the measuring arm. The probe axis angle was adjusted in the magnet to be perpendicular to the vertical field component.

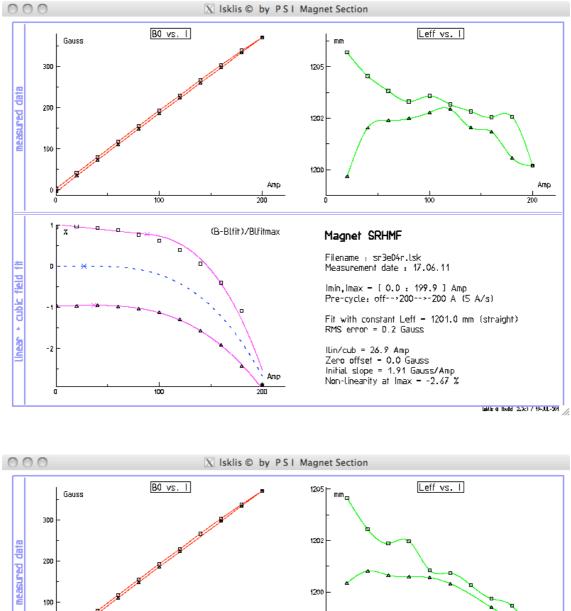

The reference pin measurements results summarised in the following table showed alignment errors (pitch and yaw angles) of around 1 mrad which is acceptable error for the size of the magnet. Plus, the accuracy of these particular measurements is not better than few tenths of mm and the geometry errors of the assembled magnet are in the order of a mm.

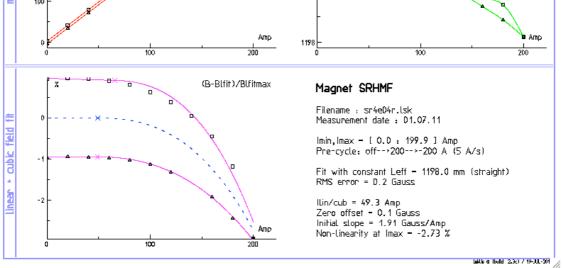
SR 3	SR 3 X [mm]		Z [mm]	
middle of points 5-8	0.6	0.5	482.2	
pitch angle (Y/Z)	0.9 mrad			
yaw angle (X/Z)	1.3 mrad			
ref-point 1	198.6	-146.3	-1324.4	
ref-point 2	-201.4	-146.1	-1324.0	
ref-points 1 & 2 pitch and yaw	200.3	-145.0	-1324.2	
corrected	-199.7	-144.9	-1324.4	

SR 4	SR 4 X [mm]		Z [mm]	
middle of points 5-8	-0.1	0.4	481.9	
pitch angle (Y/Z)	0.8 mrad			
yaw angle (X/Z)	-0.1 mrad			
ref-point 1	199.5	-145.8	-1325.6	
ref-point 2	-200.5	-145.7	-1325.70	
ref-points 1 & 2	199.3	-144.7	-1325.7	
pitch and yaw corrected	-200.6	-144.7	-1325.8	


Field maps (TRACK)

The magnets were first measured with the extended measuring arm along a straight line from Z=-800 mm to 800 mm and checked for the field symmetry in Z direction.




After the measuring arm was shortened the magnets were measured with the currents 175 A and 40 A in 5 planes (Y=0, \pm 50 mm and \pm 80 mm) on one magnet half from Z=-1770 mm to 0 mm and over X= \pm 60 mm.

The 5 field maps were symmetrised and used for generating a full field map in volume. These maps contain interpolated measured By field components and calculated Bx and Bz field component.

Excitation curves (LSKLIS)

6

Page 1 of 1 Printed For: Vjeran Vranković

sr3e04r.lsklis Saved: 19/7/2011 13:35:45

1	Magnet SRHMF								
2	_								
3	File : sr3e04r.lsk								
4	Date : 17.06.11								
5	Pro cyclo + off > 200 > 200 A (5 A/c)								
6 7	Pre-cycle : off>200->-200 A (5 A/s)								
8	#Curr · 21 (n	#(unn: 21 (nDaths-2))							
9	#Curr: 21 (nPaths=2) Z-dir: from -1770.00 mm, steps of 2.00 mm								
10	X-dir: at 0.00 mm								
11									
12	linear_<1:Il	lin> and cubic	_ <ilin:ima< th=""><th>x> approximati</th><th></th><th></th><th></th><th></th></ilin:ima<>	x> approximati					
13	Blin = $b0 +$	b1 * Irel			el = I / Imc				
14	BCUD = BLIN	+ b2 * Irel^2	2 + b3 * Ir	el^3 ; Ire	el = (I - I)	lin) / (Ima	x - Ilin)		
15 16	Ilin_4		b0_G	b1_G	b2_G	b3_G			
17	======		====	====	====	====	RMS_G =====		
18	/ 36.8		-3.7	381.4	-3.1	-4.8	0.1		
19	\ 88.2		3.9	379.2	-5.7	-5.8	0.4		
20	- 26.9	9 199.9	0.0	381.2	-0.1	-10.1	0.2		
21									
22		ing current br							
23		ing current br	ranch						
24 25	= average								
26	constleff (st	traight) = 120	01.0 mm						
27		220	210						
28	I_Amp	Bdz_Gmm	Bc_G	err_G					
29	=====		====	=====					
30	0.00*	-4356.4	-3.6	0.0					
31 32	20.00/ 39.99/	41394.1 87261.4	34.5 72.7	0.0 0.0					
33	59.98/	132888.2	110.6	0.0					
34	79.97/	178399.9	148.5	-0.1					
35	99.96/	223783.6	186.3	0.0					
36	119.95/	268795.0	223.8	0.1					
37	139.94/	313306.4	260.9	0.0					
38	159.94/	357506.3	297.7	0.0					
39 40	179.93/ 199.92*	400919.9 444580.4	333.8 370.2	-0.2 -0.5 (aver	age of 2 fit	- 5)			
41	179.93\	407087.6	339.0	0.8					
42	159.94\	364414.7	303.4	0.1					
43	139.94\	320754.4	267.1	-0.4					
44	119.95\	276495.0	230.2	-0.6					
45	99.96	231778.4	193.0	-0.4					
46	79.97\ 59.98\	186657.4	155.4	-0.1					
47	39.98\	141400.8 95846.1	117.7 79.8	0.1 0.1					
49	19.99\	50187.3	41.8	0.0					
50	0.00*	4356.4	3.6	-0.2					
51									
52		<pre>/ constLeff</pre>							
53 54	err = Bc -	- Bfit							
54									
l									

Page 1 of 1 Printed For: Vjeran Vranković

sr4e04r.lsklis Saved: 19/7/2011 13:37:46

1 2	Magnet SRHMF							
3	File : sr4e04							
4 5	Date : 01.07.1			_				
6 7	Pre-cycle : off>200>-200 A (5 A/s)							
8	#Curr: 20 (nPaths=2) Z-dir: from -1770.00 mm, steps of 2.00 mm							
10 11	X-dir: at 0.00	ð mm						
12 13	linear_<1:Ili Blin = b0 + b	in> and cubic	_ <ilin:imax< th=""><th>Approximati . Tre</th><th>on of Bc: el = I / Imc</th><th>או</th><th></th><th></th></ilin:imax<>	Approximati . Tre	on of Bc: el = I / Imc	או		
14 15	Bcub = Blin +	+ b2 * Irel^2	+ b3 * Ire		el = (I - I)		x - Ilin)	
16	Ilin_A		b0_G	b1_G	b2_G	b3_G	RMS_G	
17 18	/ 48.8		==== -3.6	 381.1	-4.9	-2.9	0.1	
19 20	\ 65.8 - 49.3	199.9 199.9	3.7 0.1	380.4 381.0	-5.4 -4.2	-7.3 -6.2	0.4 0.2	
21 22	/ = increasir	ng current br	anch					
23 24	= decreasing = average							
25 26	_	(ai ab+) _ 110	9 0 mm					
27	constLeff (str			c				
28 29	I_Amp =====	Bdz_Gmm ======	Bc_G ====	err_G =====				
30 31	0.00* 19.99/	-4359.2 41445.2	-3.6 34.6	-0.1 0.0				
32 33	39.99/ 59.98/	87038.2 132581.6	72.7 110.7	0.0 -0.1				
34 35	79.97/ 99.96/	178010.0 223167.2	148.6 186.3	-0.1 0.0				
36 37	119.95/ 159.94/	267954.9 356499.9	223.7 297.6	0.0 0.1				
38	179.93/	399835.0	333.8	-0.1	6 D 6			
39 40	199.92* 179.93\	443167.7 405526.7	369.9 338.5	0.8	ıge of 2 fit	:5)		
41 42	159.94\ 139.94\	363190.0 319820.4	303.2 267.0	0.3 -0.2				
43 44	119.95\ 99.96\	275712.8 231167.6	230.1 193.0	-0.5 -0.5				
45 46	79.97∖ 59.98∖	186329.0 141132.5	155.5 117.8	-0.3 -0.1				
47	39.99\	95721.3	79.9	0.1				
48	19.99\ 0.00*	50085.4 4359.2	41.8 3.6	0.0 -0.1				
50 51	Bc = Bdz /							
52 53	err = Bc -	Bfit						